
Autonomous control of mobile robots using logical
representation of map and inference of location

Megumi FUJITA
Graduate School of Humanities and Sciences

Nara Women’s University

Nishimachi, Kitauoya, Nara

630-8506, Japan

Email: saboten@ics.nara-wu.ac.jp

Yuki GOTO
Graduate School of System Infomatics

Kobe Univesity

1-1 Rokkoudai-cho, Nada-ku, Kobe

657-8501, Japan

Email: 120x602x@stu.kobe-u.ac.jp

Naoyuki NIDE
Faculty of Human Life and Environment

Nara Women’s University

Nishimachi, Kitauoya, Nara

630-8506, Japan

Email: nide@ics.nara-wu.ac.jp

Ken SATOH
Priciples of Infomatics Research Division

National Institute of Infomatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Email: ksatoh@nii.ac.jp

Hiroshi HOSOBE
Faculty of Computer and Infomation Sciences

Hosei University

3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

Email: hosobe@acm.org

Abstract—We propose an action-decision method for au-
tonomous mobile robots, in which a robot constructs a logical
representation of a map of its surrounding environment from its
perception and uses that map to determine a plan to logically
reach its destination. We conducted an experiment in which a
robot had a sub-goal to reach halfway to its destination and
attempt to recognize that it has reached that sub-goal in order to
proceed to the next goal. We first explain our experimental results
then provide a discussion on these results and future work.

I. INTRODUCTION

Techniques for identifying robot locations, such as SLAM,
and moving procedures using an ordinary plan library have
been recently developed. However, sometimes these techniques
lack the ability to enable logical understanding of the positional
relation between locations.

ROOM C
ROOM A

ROOM B

robot

Fig. 1. Sketch map of building and
robot’s location

next room

???opposite
room

ROOM
A

ROOM
C

ROOM
B

Fig. 2. Spatial relationship of
rooms (robot’s viewpoint)

For example, consider the situations in Figs. 1 and 2. First,
we assume that a robot is in room A, and it knows how to get to
room B from room A and to room C from room A. Suppose
that we command the robot to go to room B and return to
room A. The robot will then be able to move between rooms
B and A. Then suppose that we command the robot to go to
room C and return to room A. The robot will move similarly.
Therefore, if we command the robot to go to rooms B and
C without returning to room A, how will the robot move to
accomplish this command?

If we use an ordinary plan library, since the robot does not
have plans to move between rooms B and C, the robot will

not be able to do such movement. On the other hand, if we
use SLAM with a GPS sensor or laser range-finder device,
the data obtained from this device are not the knowledge of
the robot but the robot’s geographical position; thus, the robot
will not be able to understand the concept of the room unless
it already had a record of these rooms’ geographical positions.

Other side door

Corridor

Packages

Robot
Refrigerator

Entrance Room’s
door

Experiment room

Fig. 3. Robot’s environment in experiment room
Fig. 4. Q.bo Lite Evo

Our goal is to enable a robot to obtain new knowledge
inferred from its perception and recognition. If the robot can
recognize the relationships between rooms, it will be able
to infer new relationships like those in Fig. 2. To achieve
this goal, we have to know how to construct relationship
knowledge and use it in the robot’s moving process. To this
end, we conducted an experiment involving a robot equipped
with cameras and ultrasonic sensors that moves using its own
knowledge on the relationship between a door and entrance
(Fig. 3). We obtained successful and unsuccessful results,
which we discuss later in this paper.

II. IMPLEMENTATION OF OUR ROBOT PROGRAM

A. Robot for this study

For this study, we used Thecorpora’s Q.bo Lite Evo robot
(Fig. 4). This robot has one wheel in the front and two wheels
in the rear. It has cameras as its eyes, which can capture the

2016 International Conference on Agents

978-1-5090-3931-9/16 $31.00 © 2016 IEEE

DOI 10.1109/ICA.2016.38

78

forward view. It also has two ultrasonic sensors near its front
wheel that can detect obstacles.

B. BDI model

Our implementation is based on the BDI model, a model
of autonomous agents that emulates the process of human
goal achievement. A BDI agent, an agent based on the BDI
model, first generates its goal using its beliefs obtained from
its environments. By practical reasoning [1] using the beliefs,
it selects a means (basically from its plan library) to achieve
the goal, forms it as its intention, then attempts to maintain
the intention and execute it (the top-left green box in Fig. 5).

sensor

motor
ROS

SVM

Python

action

B, D, I

Jason (BDI)
interpreter

plan library

mental
states

TCP
communi-

cation

perception
sensory

infor-
mation

performing
actions

queue
event

practical
reasoning

perceiving
environments

Jason(BDI
architecture)

convert to
motor output

motor
output

Fig. 5. BDI agent and implementation of robot’s behavior

To make the robot have a goal and act while reasoning its
sub-goals and plans to achieve them, we used the BDI model
for the robot’s action decision. To implement this, we used
Jason[2], a platform for implementing the BDI architecture
(the fundamental agent architecture on the BDI model). With
Jason, practical reasoning can be described in a logic program-
ming language approximately corresponding to Prolog.

Since the robot’s goals and sub-goals are simple, the
advantage of using the BDI architecture is not clear, except
that we can describe goal-oriented actions in a Prolog-like
language. However, to achieve our future goal of actualizing
robots that attempt to reach their destinations by forming sub-
goals, we assume that we can take advantage of the BDI
model in which the robot can hold or modify its intentions and
maintain its sub-goals in response to environmental changes or
failures of actions in the real world[3].

C. ROS and Jason

The Q.bo Lite Evo robot has motors on its wheels and
sensors, which can be controlled using ROS[4]. We use ROS
from Python to make the robot move and obtain information
from its sensors. By processing the visual information from the
sensors using libSVM, the (non-)presence of a target object
is determined, and the result is passed to Jason. Jason then
acquires the result as a perception and uses it for practical
reasoning to determine the robot’s action, i.e., selects the plan
for the current goal and passes an atomic action to the Python
side. On the Python side, the motor output determined based
on that action is passed to ROS, and the robot acts (Fig. 5).

We are currently focused on developing a mechanism
for determining actions from goals as a practical reasoning
based on logic programming. Hence, object recognition using

libSVM currently involves a naive method, and its precision
is not so good. Improving it is our future task.

D. Design of atomic actions

Atomic actions are designed at the level of, for example,
‘proceed while avoiding obstacles’, and implemented on the
Python side. Plans using these actions as the smallest units
of action are prepared on the Jason side. As a result, when
writing plans for the BDI agent, we can plan using atomic
actions, which are robust against obstacles.

We implemented the following atomic actions. The head-
ing of each entry shows the name of the action. Actions
forward_Qbo and search_Qbo were implemented in our
previous research[5], [6].

looking_Qbo : search for an object and take an argument
as an ID of the target object. First, obtain 3 images
from the camera by rotating the robot’s head in different
directions (covering about a 160◦ view) and splitting
each image into 3× 2 areas. Next, estimate whether the
target object exists in each area using SVM. If, for some
areas, the target is judged to exist at a certainty higher
than some threshold, then the target is considered to exist
in the direction of the area with the highest certainty. If
not, the target is considered not to exist. The result is
returned as a perception.

forward_Qbo : take an argument as a base direction, turn
to the specified base direction, and move ahead a con-
stant length. The capability to detect an obstacle with
ultrasonic sensors in parallel with moving is built into
this action, and for detecting an obstacle, the robot stops.
After this action, information of the robot’s direction and
whether the robot is facing an obstacle is received as
perceptions (the same holds for search_Qbo).

search_Qbo : take an argument as a base direction, turn to
the direction that is close to the specified base direction,
and move to where no obstacles are found. This first
involves turning to the specified direction, and if there
is any obstacle in that direction, turning around little by
little until facing no obstacle.

E. Decision-making program for robots

We prepared a decision-making program for our robot as a
plan of the BDI agent as follows. Currently, we assume that a
robot is in a room whose door is opened inward. The final goal
for the robot is ‘to move out of the room’, and we set a goal
of ‘reach the exit of the room’ as an intermediate step. The
plan to achieve this goal consists of the following sequence of
sub-goals and written in Jason, as shown in Fig. 6.

i) Access the door of the room
ii) At that point, find the entrance of the room

@re
+!reach_exit
<- !reach_object(door); // access the door

!reach_object(entry). // find the entrance

Fig. 6. Plan for finding exit of room

To achieve these sub-goals, we prepared sub-plan ‘ro’
shown in Fig. 7 in Jason. Note that a tag beginning with ‘@’ at
the top of each plan shows the name of that plan. This plan,

79

@ro
+!reach_object(Object)
<- // initially set approximate direction to object

!set_expected_target_direction(Object);
!search_object(Object). // main process of search

@s_td1
+!set_expected_target_direction(door)
<- // set expected direction of door given ad hoc

-+expected_target_direction(0).

@s_td2
+!set_expected_target_direction(entry)
: my_current_direction(Dir)
<- // expected direction of door entry is separated

// by 45 degrees from current direction
-+expected_target_direction(Dir + 45).

@so1
+!search_object(Object)
: // if not in front of object yet

not front_of(Object)
<- // receive perception caused by previous action

!get_my_current_direction;
!get_information_of_obstacle;
// internally call looking_Qbo to find target object
!around_search(Object);
// decide next action and send it to robot
!decide_action;
// recursively try to achieve the goal
!search_object(Object).

@so2
+!search_object(Object)
<- true. // if already in front of object

Fig. 7. Sub-plans for finding object

@da1
+!decide_action
: // if target is visible, and facing obstacle

found_target(Object) & target_direction(Dir) &
found_obstacle

<- // find nearest direction with no obstacle
tcp_write(search_Qbo(Dir)).

@da2
+!decide_action
: // if target is visible, and not facing obstacle

found_target(Object) & target_direction(Dir)
<- // proceed toward the target

tcp_write(forward_Qbo(Dir)).

@da3
+!decide_action
: // if target is not visible, and facing obstacle

found_obstacle & expected_target_direction(Dir)
// expected_target_direction/1 returns approximate
// direction of the target given initially

<- // find direction with no obstacle
// near initial direction
tcp_write(search_Qbo(Dir)).

@da4
+!decide_action
: // if target is not visible, nor facing obstacle

expected_target_direction(Dir)
<- // proceed toward initial direction

tcp_write(forward_Qbo(Dir)).

Fig. 8. Sub-plans for deciding action

working with some sub-subplans, is prepared for reaching the
front of a target object. It is commonly used in both i) and ii)
above. In Fig. 7 (and for other figures referred in this section),
a plan is in the form of ‘triggering event : precondition <-
plan body’ (where precondition can be omitted), and ‘!’, ‘+!’
denote a sub-goal and event of goal addition, respectively. Note
that not all definitions of sub-goals are given in this paper. The
symbol ‘-+’ denotes a belief revision. Atoms that appear in
plan body, which do not begin with any special symbol such
as ‘!’ or ‘-+’, are atomic actions; in Jason, atomic actions are

implemented using Java. The symbol ‘//’ denotes a comment.
Sub-plan ‘ro’ executes the following processes.

1) Initially set the approximate direction of the target.
2) Receive perception.
3) Attempt to find the target object using looking_Qbo.
4) Depending on the perception caused by 3), decide the

next action (forward_Qbo or search_Qbo) as follows
(see Fig. 8), and send it to the Python side via TCP
(by tcp_write).

a) As a base direction, choose the direction toward
the target if it is visible. If not, choose the direction
initially given as an approximate direction to it.

b) Select forward_Qbo to proceed if the robot is
facing no obstacle, or search_Qbo to avoid the
obstacle as the next action. The base direction
chosen in 4a) is given as the argument of the
action.

5) Repeat the process from 2) to 4) by recursive call.

door
wall

direction
of robot

current

direction
to entrance

expected

Fig. 9. Belief regarding direction to
door and exit

Between i) and ii) men-
tioned above, to obtain the
initial direction of the en-
trance, the robot uses an em-
pirical rule that the expected
direction to the room en-
trance is separated by 45◦
from the direction of the
robot when the robot reaches
the front of the door (plan ‘s_td2’ in Fig. 7). This rule comes
from the fact that the angle between the exit and door was
about 90◦ in this experiment (Fig. 9).

F. Discussion on process of recognizing door

In this study, the robot recognized the door via its visual
perception. However, due to the limit of its range of vision, the
robot could only acquire a partial image of the door instead
of that of the entire door. In this study, the room door had a
horizontal slit under the doorknob, which the robot selected as
a characteristic of the door in order to recognize it. We argue
that the procedure described above is close to the concentration
of mind in human object recognition. When a human opens
a door, he/she concentrates his/her mind to a characteristic
part of the door, such as the doorknob, to recognize the door
and open it, instead of having awareness of the entire door.
We assume that localized use of information is also useful for
robots to recognize their environments.

III. EXPERIMENT AND DISCUSSION

We now discuss the results of our experiment.

A. Experimental results

First, the robot moved in the expected direction of the door
given initially, found the door, and moved in the direction
toward the front of the door. When it approached the front
of the door, the context of plan ‘so1’ in Fig. 7 for reaching
the front of the door was not satisfied under the following two
conditions : recognizing the door by using SVM, and meeting
the requirement of the ultrasonic sensors on its body, where
we call these conditions “stop conditions” for plan ‘re’ in
Fig. 6. Then the goal !reach_object(door) (in the plan

80

‘re’) was achieved through plan ‘so2’ in Fig. 7. Therefore,
the robot’s next goal was !reach_object(entry) (in plan
‘re’) for reaching the entrance and exiting the room, and the
robot moved in the direction by setting the rule of sub-plan
‘s_td2’ in Fig. 7 to find the entry. With this knowledge, the
robot moved to the entrance of the room and exited the room.
This is a desirable result (Fig. 10).

Other side door

Packages

Refrigerator

Entrance Room’s
door

Corridor

Experiment room

Fig. 10. Route of robot’s
movement during exper-
iment (magenta line de-
notes executing plan for
reaching front of door.
Red line denotes plan
for reaching entrance of
room.)

Second, though the robot moved in the expected direction
toward the door given initially, found the experiment room
door, and moved in the direction toward the front of the door,
like the first result, it found the opposite room door while it was
moving toward the experiment room door. Therefore, the robot
mistook the target as the opposite room door and moved toward
the vicinity of the entrance of the room. At this point, the
context of plan ‘so1’ for reaching the front of the door was not
satisfied because when the robot approached the entrance of the
room, the stop conditions were incorrectly satisfied by finding
the opposite door and meeting the requirement of the ultrasonic
sensors since its body was caught on the edge of the doorway.
Then goal !reach_object(door) (in plan ‘re’) was achieved
with plan ‘so2’. Therefore, the robot started to exit at that
location by executing goal !reach_object(entry) (in plan
‘re’). As a result, the robot could not find the entrance and
exit the room by using this knowledge (Fig. 11).

Other side door

Packages

Refrigerator

Entrance Room’s
door

Corridor

Experiment room

Fig. 11. Route of robot’s
movement during experi-
ment (green line is exe-
cuting plan for reaching
front of door. Red circle
is condition of recogniz-
ing door. Magenta circle
is condition of meeting
requirement of ultrasonic
sensors.)

B. Discussion

From the second result in Sec. III-A, the robot did not move
properly due to improperly implementing the stop conditions.
In this experiment, we implemented the rule for the following
two stop conditions : “The front of the door” by recognizing
the door, and meeting the requirement of the ultrasonic sensors.
In the real world, we can understand “the front of the door”
empirically, but it is difficult to implement such a condition.
Because the real world is a continuous space, it is difficult to
uniquely determine such an abstraction.

IV. RELATED WORK

Nüchter et al. [7] proposed a method for understanding
the space of the real world by labeling floors, ceilings, and
walls using the inference rules of Prolog based on the vertical
or parallel relationship on a three dimensional map obtained
from a robot’s 3D scan and using 6D SLAM [8]. However,
they mentioned that using HTN planner [9] for determining a
robot’s movement using this logical information is a subject
for future analysis. On the other hand, we used the BDI model
and logic programming for determining a robot’s movement,
and the robot performed goal-oriented actions.

Lidoris et al. [10] developed the ACE project for devel-
oping a robot that can reach a destination without an existing
map or GPS sensors and move outdoors. The main contribution
of their paper was that the robot could reach a destination by
asking pedestrians. Their robot is composed of a finite state
machine consisting of three action-decision modules “Active,
Inactive, and PriorityCheck”. In contrast, we used the BDI
model for the robot’s action decision, and the robot could
flexibly modify it’s goal.

V. CONCLUSION

We proposed an action-decision method constructed in
logical form and conducted an experiment. Through this
experiment, we found the problem of stop conditions for
logical representation and the necessity of appropriate stop
conditions in the real world. For future work, we will devise a
solution to the stop condition problem and conduct a verifica-
tion experiment. We expect the robot’s control of the logical
representation will overcome this problem. We will also work
toward our ultimate goal of actualizing robots that can logically
understand the geographical relations between locations and
use the knowledge in movement plans.

REFERENCES

[1] M. E. Bratman, Intention, Plans, and Practical Reason. Harvard
University Press, 1987.

[2] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

[3] M. Fujita, H. Katayama, N. Nide, and S. Takata, “BDI robots who adapt
to the diversity of the real world,” IPSJ Transactions on MPS, vol. 5,
no. 1, pp. 50–64, 2012, (In Japanese).

[4] ROS.org, “About ROS,” http://www.ros.org/about-ros/.

[5] M. Fujita, Y. Goto, N. Nide, K. Satoh, and H. Hosobe, “Logic-based
and robust decision making for robots in real world,” in Proc. of AAMAS
’14, 2014, pp. 1685–1686.

[6] ——, “An architecture for autonomously controlling robot with em-
bodiment in real world,” in Proc. of Knowledge Representation and
Reasoning in Robotics (workshop at ICLP 2013), 2013, pp. 59–71.

[7] A. Nüchter and J. Hertzberg, “Towards semantic maps for mobile
robots,” Robotics and Autonomous Systems, vol. 56, no. 11, pp. 915–
926, 2008.

[8] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM
— 3D mapping outdoor environments,” Journal of Field Robotics,
vol. 24, no. 8-9, pp. 699–722, 2007.

[9] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: Theory
and Practice. Morgan Kaufmann Publishers Inc., 2004.

[10] G. Lidoris, F. Rohrmuüller, D. Wollherr, and M. Buss, “The autonomous
city explorer (ACE) project — mobile robot navigation in highly pop-
ulated urban environments,” in Proc. of IEEE International Conference
on Robotics and Automation, 2009, pp. 1416–1422.

81

