
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Autonomous control of mobile robots using logical

representation of map and inference of location

Megumi FUJITA†a), Yuki GOTO††, Nonmembers, Naoyuki NIDE†††, Member, Ken SATOH††††,
and Hiroshi HOSOBE†††††, Nonmembers

SUMMARY We propose an action-decision method for au-
tonomous mobile robots, in which a robot constructs a logical
representation of a map of its surrounding environment from its
perception and uses that map to determine a plan to logically
reach its destination. We conducted an experiment in which a
robot had a sub-goal to reach halfway to its destination and at-
tempt to recognize that it has reached that sub-goal in order to
proceed to the next goal. We first explain our experimental re-
sults then provide a discussion on these results and future work.
key words: BDI agent, mobile robot, logical inference of actions

1. Introduction

Techniques for identifying robot locations, such as
SLAM, and moving procedures using an ordinary plan
library have been recently developed. However, some-
times these techniques lack the ability to enable logical
understanding of the positional relation between loca-
tions.
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Fig. 1 Sketch map of building and robot’s location

For example, consider the situations in Figs. 1 and
2. First, we assume that a robot is in room A, and it
knows how to get to room B from room A and to room
C from room A. Suppose that we command the robot
to go to room B and return to room A. The robot will
then be able to move between rooms B and A. Then
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Fig. 2 Spatial relationship of rooms (robot’s viewpoint)

suppose that we command the robot to go to room C
and return to room A. The robot will move similarly.
Therefore, if we command the robot to go to rooms B
and C without returning to room A, how will the robot
move to accomplish this command?

If we use an ordinary plan library, since the robot
does not have plans to move between rooms B and C,
the robot will not be able to do such movement. On the
other hand, if we use SLAM with a GPS sensor or laser
range-finder device, the data obtained from this device
are not the knowledge of the robot but the robot’s ge-
ographical position; thus, the robot will not be able to
understand the concept of the room unless it already
had a record of these rooms’ geographical positions.
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Fig. 3 Robot’s environment in experiment room

Our goal is to enable a robot to obtain new knowl-
edge inferred from its perception and recognition. If the
robot can recognize the relationships between rooms, it
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Fig. 4 Q.bo Lite Evo

will be able to infer new relationships like those in Fig.
2. To achieve this goal, we have to know how to con-
struct relationship knowledge and use it in the robot’s
moving process. To this end, we conducted an experi-
ment involving a robot equipped with cameras and ul-
trasonic sensors that moves using its own knowledge on
the relationship between a door and entrance (Fig. 3).
We obtained successful and unsuccessful results, which
we discuss later in this paper.

2. Implementation of our robot program

2.1 Robot for this study

For this study, we used Thecorpora’s Q.bo Lite Evo
robot (Fig. 4). This robot has one wheel in the front
and two wheels in the rear. It has cameras as its eyes,
which can capture the forward view. It also has two
ultrasonic sensors near its front wheel that can detect
obstacles.

2.2 BDI model

Our implementation is based on the BDI model, a
model of autonomous agents that emulates the process
of human goal achievement. A BDI agent, an agent
based on the BDI model, first generates its goal using
its beliefs obtained from its environments. By practical
reasoning [1] using the beliefs, it selects a means (ba-
sically from its plan library) to achieve the goal, forms
it as its intention, then attempts to maintain the in-
tention and execute it (the top-left green box in Fig.
5).

To make the robot have a goal and act while rea-
soning its sub-goals and plans to achieve them, we used
the BDI model for the robot’s action decision. To im-
plement this, we used Jason[2], a platform for imple-
menting the BDI architecture (the fundamental agent
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Fig. 5 BDI agent and implementation of robot’s behavior

architecture on the BDI model). With Jason, practi-
cal reasoning can be described in a logic programming
language approximately corresponding to Prolog.

Since the robot’s goals and sub-goals are simple,
the advantage of using the BDI architecture is not clear,
except that we can describe goal-oriented actions in a
Prolog-like language. However, to achieve our future
goal of actualizing robots that attempt to reach their
destinations by forming sub-goals, we assume that we
can take advantage of the BDI model in which the robot
can hold or modify its intentions and maintain its sub-
goals in response to environmental changes or failures
of actions in the real world[3].

2.3 ROS and Jason

The Q.bo Lite Evo robot has motors on its wheels and
sensors, which can be controlled using ROS[4]. We use
ROS from Python to make the robot move and ob-
tain information from its sensors. By processing the
visual information from the sensors using libSVM, the
(non-)presence of a target object is determined, and the
result is passed to Jason. Jason then acquires the re-
sult as a perception and uses it for practical reasoning
to determine the robot’s action, i.e., selects the plan
for the current goal and passes an atomic action to the
Python side. On the Python side, the motor output
determined based on that action is passed to ROS, and
the robot acts (Fig. 5).

We are currently focused on developing a mech-
anism for determining actions from goals as a practi-
cal reasoning based on logic programming. Hence, ob-
ject recognition using libSVM currently involves a naive
method, and its precision is not so good. Improving it
is our future task.

2.4 Design of atomic actions

Atomic actions are designed at the level of, for example,
‘proceed while avoiding obstacles’, and implemented on
the Python side. Plans using these actions as the small-
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est units of action are prepared on the Jason side. As
a result, when writing plans for the BDI agent, we can
plan using atomic actions, which are robust against ob-
stacles.

We implemented the following atomic actions. The
heading of each entry shows the name of the action. Ac-
tions forward_Qbo and search_Qbo were implemented
in our previous research[5], [6].

looking_Qbo : search for an object and take an argu-
ment as an ID of the target object. First, obtain
3 images from the camera by rotating the robot’s
head in different directions (covering about a 160◦

view) and splitting each image into 3 × 2 areas.
Next, estimate whether the target object exists in
each area using SVM. If, for some areas, the target
is judged to exist at a certainty higher than some
threshold, then the target is considered to exist in
the direction of the area with the highest certainty.
If not, the target is considered not to exist. The
result is returned as a perception.

forward_Qbo : take an argument as a base direction,
turn to the specified base direction, and move
ahead a constant length. The capability to detect
an obstacle with ultrasonic sensors in parallel with
moving is built into this action, and for detecting
an obstacle, the robot stops. After this action, in-
formation of the robot’s direction and whether the
robot is facing an obstacle is received as percep-
tions (the same holds for search_Qbo).

search_Qbo : take an argument as a base direction,
turn to the direction that is close to the specified
base direction, and move to where no obstacles are
found. This first involves turning to the specified
direction, and if there is any obstacle in that di-
rection, turning around little by little until facing
no obstacle.

2.5 Decision-making program for robots

We prepared a decision-making program for our robot
as a plan of the BDI agent as follows. Currently, we
assume that a robot is in a room whose door is opened
inward. The final goal for the robot is ‘to move out of
the room’, and we set a goal of ‘reach the exit of the
room’ as an intermediate step. The plan to achieve this
goal consists of the following sequence of sub-goals and
written in Jason, as shown in Fig. 6.

i. Access the door of the room
ii. At that point, find the entrance of the room

To achieve these sub-goals, we prepared sub-plan
‘ro’ shown in Fig. 7 in Jason. Note that a tag beginning
with ‘@’ at the top of each plan shows the name of that
plan. This plan, working with some sub-subplans, is
prepared for reaching the front of a target object. It is
commonly used in both i. and ii. above. In Fig. 7 (and

@re

+!reach_exit

<- // access the door

!reach_object(door);

// find the entrance

!reach_object(entry).

Fig. 6 Plan for finding exit of room

@ro

+!reach_object(Object)

<- // initially set approximate

// direction to object

!set_expected_target_direction(Object);

// main process of search

!search_object(Object).

@s_td1

+!set_expected_target_direction(door)

<- // set expected direction

// of door given ad hoc

-+expected_target_direction(0).

@s_td2

+!set_expected_target_direction(entry)

: my_current_direction(Dir)

<- // expected direction of door entry

// is separated by 45 degrees from

// current direction

-+expected_target_direction(Dir + 45).

@so1

+!search_object(Object)

: // if not in front of object yet

not front_of(Object)

<- // receive perception caused by

// previous action

!get_my_current_direction;

!get_information_of_obstacle;

// internally call looking_Qbo to

// find target object

!around_search(Object);

// decide next action and

// send it to robot

!decide_action;

// recursively try to achieve the goal

!search_object(Object).

@so2

+!search_object(Object)

<- true. // if already in front of object

Fig. 7 Sub-plans for finding object

for other figures referred in this section), a plan is in the
form of ‘triggering event : precondition <- plan body ’
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@da1

+!decide_action

: // if target is visible, and

// facing obstacle

found_target(Object) &

target_direction(Dir) &

found_obstacle

<- // find nearest direction

// with no obstacle

tcp_write(search_Qbo(Dir)).

@da2

+!decide_action

: // if target is visible, and

// not facing obstacle

found_target(Object) &

target_direction(Dir)

<- // proceed toward the target

tcp_write(forward_Qbo(Dir)).

@da3

+!decide_action

: // if target is not visible, and

// facing obstacle

found_obstacle &

// expected_target_direction/1

// returns approximate direction of

// the target given initially

expected_target_direction(Dir)

<- // find direction with no obstacle

// near initial direction

tcp_write(search_Qbo(Dir)).

@da4

+!decide_action

: // if target is not visible,

// nor facing obstacle

expected_target_direction(Dir)

<- // proceed toward initial direction

tcp_write(forward_Qbo(Dir)).

Fig. 8 Sub-plans for deciding action

(where precondition can be omitted), and ‘!’, ‘+!’ de-
note a sub-goal and event of goal addition, respectively.
Note that not all definitions of sub-goals are given in
this paper. The symbol ‘-+’ denotes a belief revision.
Atoms that appear in plan body, which do not begin
with any special symbol such as ‘!’ or ‘-+’, are atomic
actions; in Jason, atomic actions are implemented using
Java. The symbol ‘//’ denotes a comment. Sub-plan
‘ro’ executes the following processes.

1. Initially set the approximate direction of the tar-
get.

2. Receive perception.
3. Attempt to find the target object using looking_

Qbo.
4. Depending on the perception caused by 3., decide

the next action (forward_Qbo or search_Qbo) as
follows (see Fig. 8), and send it to the Python side
via TCP (by tcp_write).

a. As a base direction, choose the direction to-
ward the target if it is visible. If not, choose
the direction initially given as an approximate
direction to it.

b. Select forward_Qbo to proceed if the robot is
facing no obstacle, or search_Qbo to avoid the
obstacle as the next action. The base direction
chosen in 4a. is given as the argument of the
action.

5. Repeat the process from 2. to 4. by recursive call.

door
wall

direction
of robot

current

direction
to entrance

expected

Fig. 9 Belief regarding direction to door and exit

Between i. and ii. mentioned above, to obtain the
initial direction of the entrance, the robot uses an em-
pirical rule that the expected direction to the room en-
trance is separated by 45◦ from the direction of the
robot when the robot reaches the front of the door (plan
‘s_td2’ in Fig. 7). This rule comes from the fact that
the angle between the exit and door was about 90◦ in
this experiment (Fig. 9).

2.6 Discussion on process of recognizing door

In this study, the robot recognized the door via its vi-
sual perception. However, due to the limit of its range
of vision, the robot could only acquire a partial image
of the door instead of that of the entire door. In this
study, the room door had a horizontal slit under the
doorknob, which the robot selected as a characteristic
of the door in order to recognize it. We argue that the
procedure described above is close to the concentration
of mind in human object recognition. When a human
opens a door, he/she concentrates his/her mind to a
characteristic part of the door, such as the doorknob,
to recognize the door and open it, instead of having
awareness of the entire door. We assume that localized
use of information is also useful for robots to recognize
their environments.
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3. Experiment and discussion

We now discuss the results of our experiment.

3.1 Experimental results

First, the robot moved in the expected direction of the
door given initially, found the door, and moved in the
direction toward the front of the door. When it ap-
proached the front of the door, the context of plan ‘so1’
in Fig. 7 for reaching the front of the door was not satis-
fied under the following two conditions: recognizing the
door by using SVM, and meeting the requirement of the
ultrasonic sensors on its body, where we call these con-
ditions “stop conditions” for plan ‘re’ in Fig. 6. Then
the goal !reach object(door) (in the plan ‘re’) was
achieved through plan ‘so2’ in Fig. 7. Therefore, the
robot’s next goal was !reach_object(entry) (in plan
‘re’) for reaching the entrance and exiting the room,
and the robot moved in the direction by setting the rule
of sub-plan ‘s_td2’ in Fig. 7 to find the entry. With
this knowledge, the robot moved to the entrance of the
room and exited the room. This is a desirable result
(Fig. 10).

Other side door

Packages

Refrigerator

Entrance Room’s
door

Corridor

Experiment room

Fig. 10 Route of robot’s movement during experiment (ma-
genta line denotes executing plan for reaching front of door. Red
line denotes plan for reaching entrance of room.)

Second, though the robot moved in the expected
direction toward the door given initially, found the ex-
periment room door, and moved in the direction to-
ward the front of the door, like the first result, it found
the opposite room door while it was moving toward
the experiment room door. Therefore, the robot mis-
took the target as the opposite room door and moved
toward the vicinity of the entrance of the room. At
this point, the context of plan ‘so1’ for reaching the
front of the door was not satisfied because when the
robot approached the entrance of the room, the stop

conditions were incorrectly satisfied by finding the op-
posite door and meeting the requirement of the ultra-
sonic sensors since its body was caught on the edge
of the doorway. Then goal !reach_object(door) (in
plan ‘re’) was achieved with plan ‘so2’. Therefore, the
robot started to exit at that location by executing goal
!reach_object(entry) (in plan ‘re’). As a result, the
robot could not find the entrance and exit the room by
using this knowledge (Fig. 11).

Other side door

Packages

Refrigerator

Entrance Room’s
door

Corridor

Experiment room

Fig. 11 Route of robot’s movement during experiment (green
line is executing plan for reaching front of door. Red circle is con-
dition of recognizing door. Magenta circle is condition of meeting
requirement of ultrasonic sensors.)

3.2 Discussion

From the second result in Sec. 3.1, the robot did not
move properly due to improperly implementing the stop
conditions. In this experiment, we implemented the
rule for the following two stop conditions: “The front
of the door” by recognizing the door, and meeting the
requirement of the ultrasonic sensors. In the real world,
we can understand “the front of the door” empirically,
but it is difficult to implement such a condition. Be-
cause the real world is a continuous space, it is difficult
to uniquely determine such an abstraction.

4. Logical Formalization of our experiment

Since our robot program is logic-based, we can formal-
ize our robot’s behavior by using BDI logic which de-
scribes BDI agents.

Here we present an example in which, under some
ideal assumptions, our robot eventually reaches the tar-
get object by using TOMATO[7], an extended BDI logic
we proposed.

Hereafter, we abbreviate the atomic actions
forward_Qbo and search_Qbo (introduced in Sec. 2.4)
as srQ and fwQ , respectively (note that these are
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treated as events in TOMATO). Similarly, we abbrevi-
ate the condition found_obstacle (used in plans @da1
and @da3) as fOb (treated as an atomic formula in
TOMATO).

4.1 Modeling

Here we assume that the robot moves across a two-
dimensional Euclidean plane and the target object is
located at the origin position, O. We represent the
location of the robot as a vector x, and represent a
probabilistic distribution of x as f(x). Hereafter, we
write

∫
x∈R2 |x|2f(x)dx as Df . Df becomes smaller as

f is distributed closer to O. If f is the probabilistic dis-
tribution of x at the current time, then we abbreviate
Df as D, omitting f .

In addition, we assume the following.

A. If the robot is located at x0, then the destina-
tion of the robot by the action fwQ follows a two-
dimensional normal distribution N (x | x1, σ

2I)
with mean x1 = x0 ·(|x0|−r)/|x0| and variance σ2

(where I is the unit matrix). Here, with positive
constants k and R (R � 2k), r and σ2 are given
as follows.

r =

|x0|/2 if |x0| < 2k
k if 2k ≤ |x0| ≤ R
k|x0|/R otherwise

σ2 = r2/2

Furthermore, if D is finite before executing the ac-
tion srQ , it remains finite afterwards.

B. The robot executes the action srQ a finite number
of times until it reaches the target object.

C. At the initial state, D is finite.

If R is sufficiently big and the probability of |x| >
R can be ignored, we can view the assumption A. as
reflecting the following property of fwQ : by executing
fwQ , the robot approaches the target object by moving
a variable distance that is on average k (except if it
is already close enough to the target), but the actual
location of the robot follows a certain distribution with
a variance σ2 (Fig. 12).

k

O

x1

x0

(target)

robot’s movement

Fig. 12 Robot is assumed to approach target in steps of ap-
proximately same distance

In addition, the assumption B. can be viewed as

the property that the number of times the robot loses
track of the target is sufficiently small.

Under the conditions that the target recogni-
tion and the movement of the robot are accurate
enough, and the possibility of facing obstacles (includ-
ing the possibility of entering a dead end) is adequately
low, those assumptions are reasonable. Of course,
these conditions are somewhat stronger than the re-
ality.However, the assumptions introduced above are
helpful to simplify the arguments.

4.2 TOMATO

We leave the detail of TOMATO to [7]. TOMATOhas
operators which represent state transitions by individ-
ual events, in addition to the operators in the original
BDI logic. For example, a formula AXe φ represents
that ‘at the next time transited from now by the event
e, φ holds’, and formulas BELa φ, DESIREa φ, INTENDa

φ represent that ‘agent a believes, desires, or intends φ,
respectively’. In addition, TOMATOhas a fixed-point
operator µ enabling us to introduce temporal operators
corresponding to ones in CTL such as AXφ (φ holds at
next time), AFφ (φ holds eventually), AGφ (φ holds
forever) as abbreviations.

In this paper, we additionally introduce the follow-
ing abbreviations.

• AXφ?e;e′ ψ
def≡ (φ ⊃ AXe ψ) ∧ (¬φ ⊃ AXe′ ψ) · · ·

after executing ‘if φ then e else e′’, ψ holds at next
time.

• AFe φ
def≡ µX.(φ∨AXe X) · · · after executing e con-

tinuously, φ holds eventually. We use this abbre-
viation also in conjunction with the abbreviation
above.

• AGe φ
def≡ ¬AFe ¬φ · · · while executing e, φ contin-

uously holds.

4.3 Describing robot’s properties

To achieve a goal !reach_object(target), our robot
continuously executes ‘if fOb holds, then srQ , else fwQ ’
until reaching the target object, by plans shown in Fig.
7 and 8.

Here we set α = 1 − 2k(R − k)/R2 as a constant
satisfying 0 < α < 1. Since DN (x|x1,σ2I) = |x1|2 +2σ2,
the assumption A. in Sec. 4.1 implies that the value of
D after executing fwQ is smaller than α times the value
of D before executing fwQ .

Henceforth, we use an atomic formula d(D0) to
state that the current value of D introduced in Sec. 4.1
is a real number D0. The assumptions A., B. in Sec.
4.1 can be represented by the following formulas (1)
and (2), respectively.

AG(∀D0(d(D0) ⊃ ∃D1(D1 ≤ αD0 ∧
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AXfwQ d(D1)) ∧ ∃D1 AX
srQ d(D1))) (1)

AFfOb?srQ:fwQ AGfwQ ¬fOb (2)

In addition, we can write ‘the robot comes suffi-
ciently close to the target object’ as the following for-
mula:

∀D0(d(D0) ⊃ ∀D1(D1 > 0 ⊃ ∃D2

(D1 ≥ D2 ≥ 0 ∧ AFfOb?srQ:fwQ d(D2)))) (3)

and show that (1) ∧ (2) ⊃ (3) is valid by using seman-
tical arguments.

Furthermore, since TOMATO is an extension of
BDI logic and has operators representing mental states
such as beliefs and intentions, we can directly describe
properties regarding the robot agent’s behaviors and
mental states. Hereafter, we write the state where the
goal !reach_object(target) is achieved as an atomic
formula reO(target). Assuming that when the robot
intends to achieve !reach_object(target), it behaves
so that (1) and (2) hold. It can be written as:

INTENDa AF reO(target) ⊃ (1) ∧ (2) (4)

where a denotes the robot agent. We also assume that
when the robot becomes sufficiently close to the target,
the robot believes reO(target). It can be written as:

∃D ∀D′(0 ≤ D′ ≤ D ⊃
AG(d(D′) ⊃ BELa reO(target))) (5)

We can show that the following formula is valid:

∃Dd(D) ∧ INTENDa AF reO(target) ∧ (4) ∧ (5) ⊃
AFfOb?srQ:fwQ BELa reO(target)

which describes that ‘if the robot intends to achieve
reO(target), then the robot will eventually believe
reO(target) after executing the plans shown in Fig. 7
and 8’.

4.4 Discussion

In this case, we used the decrease of D to express that
the robot is coming close to the target. Using the prob-
abilistic state transition operator from TOMATO, we
could express ‘robot is coming close to the target’ more
directly. Unfortunately, only the AX operator can ex-
press probabilistic state transition in TOMATO, and
operators such as AF and AG cannot do so. There-
fore, we currently cannot express statuses such as ‘even-
tually, the robot’s location will follow a distribution
close enough to the target’ in TOMATO. Extending
TOMATO to enable describing such a status is one of
our future works.

In addition, as noted before, the assumptions in
Sec. 4.1 are somewhat strong. If the precision of the
robot’s movement is not enough, then the assumption

A. in Sec. 4.1 does not hold, and does not guarantee
that the robot will reach the target. To make both the
model and the robot’s movement more precise is also a
future work.

5. Related work

Nüchter et al. [8] proposed a method for understanding
the space of the real world by labeling floors, ceilings,
and walls using the inference rules of Prolog based on
the vertical or parallel relationship on a three dimen-
sional map obtained from a robot’s 3D scan and using
6D SLAM [9]. However, they mentioned that using
HTN planner [10] for determining a robot’s movement
using this logical information is a subject for future
analysis. On the other hand, we used the BDI model
and logic programming for determining a robot’s move-
ment, and the robot performed goal-oriented actions.

Lidoris et al. [11] developed the ACE project for
developing a robot that can reach a destination without
an existing map or GPS sensors and move outdoors.
The main contribution of their paper was that the robot
could reach a destination by asking pedestrians. Their
robot is composed of a finite state machine consisting
of three action-decision modules “Active, Inactive, and
PriorityCheck”. In contrast, we used the BDI model for
the robot’s action decision, and the robot could flexibly
modify it’s goal.

6. Conclusion

We proposed an action-decision method constructed in
logical form and conducted an experiment. Through
this experiment, we found the problem of stop con-
ditions for logical representation and the necessity of
appropriate stop conditions in the real world. For fu-
ture work, we will devise a solution to the stop con-
dition problem and conduct a verification experiment.
We expect the robot’s control of the logical represen-
tation will overcome this problem. We will also work
toward our ultimate goal of actualizing robots that can
logically understand the geographical relations between
locations and use the knowledge in movement plans.
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